3 Parent Brave New World

 GMO Babies with Three Parents?

Human EggSome call a new medical procedure “macabre“, others ‘Frankenscience‘, while advocates say it prevents mothers with mitochondrial disease from having unhealthy children: “they hope to prevent a variety of devastating diseases caused by mutations in mtDNA.”

In Britain, Dr. Doug Turnbull, who led the research team at Newcastle University, said last year: “What we’re trying to do is help people have healthy children, and it’s not appropriate for us to pre-judge.”

The Daily Mail explained it in a nutshell:

“The treatment is designed to get rid of faulty genes carried in structures known as mitochondria, passed down to babies from their mothers. Mitochondria are contained in all human cells and provide them with energy. If faulty, they can cause a range of debilitating, often fatal, diseases that cannot be cured.

The procedure involves taking the fertilised egg of a woman affected by faulty mitochondria and removing most of the genetic central material, or pronuclei. This is then transferred into the healthy egg of a second woman.”

Dr. Turnbull added, “I can understand those who say this is Frankenscience. But people with those views tend to be the same ones who are against IVF and any research in this area.”

The New York Times magazine published a longer story about this new technology of a baby with a father and two mothers. From The Center for Advanced Reproductive Services at UCONN 

The Brave New World of Three-Parent I.V.F.

A new treatment could sidestep certain hereditary diseases by altering the genetic makeup of the egg. Is there anything wrong with that?

Published in the New York Times by Kim Tingley

In August 1996, at St. Barnabas Medical Center in Livingston, N.J., a 39-year-old mechanical engineer from Pittsburgh named Maureen Ott became pregnant. Ott had been trying for almost seven years to conceive a child through in vitro fertilization. Unwilling to give up, she submitted to an experimental procedure in which doctors extracted her eggs, slid a needle through their shiny coat and injected not only her husband’s sperm but also a small amount of cytoplasm from another woman’s egg. When the embryo was implanted in Ott’s womb, she became the first woman on record to be successfully impregnated using this procedure, which some say is the root of an exciting medical advance and others say is the beginning of the end of the human species.

The fresh cytoplasm that entered Ott’s eggs (researchers thought it might help promote proper fertilization and development) contained mitochondria: bean-shaped organelles that power our cells like batteries. But mitochondria also contain their own DNA, which meant that her child could possess the genetic material of three people. In fact, the 37 genes in mitochondrial DNA pass directly from a woman’s egg into every cell of her offspring, including his or her germ cells, the sperm or eggs that eventually produce the next generation — so if Ott had a girl and the donor mitochondria injected into Ott’s egg made it into the eggs of her daughter, they could be passed along to her children. This is known as crossing the germ line, something that scientists generally agree is a risky proposition.

Ott, who is Catholic, remembers weighing whether altering the makeup of her descendants in this way was O.K. “Being a person who’s been involved in science my whole life, the way I looked at it is: God gives us doctors to help us, and they help us with things like infertility,” she told me recently. As far as anyone knows, mitochondrial DNA (mtDNA) governs only basic cellular functions; Ott understood that her and her husband’s nuclear DNA would determine their child’s characteristics — height, eye color, intelligence and so on. “If I was doing something like, say, I only wanted a blond-haired girl, I would feel that was unethical,” she said. “But what I was trying to do was use whatever medical procedures were available to me to get pregnant, and I didn’t think that was unethical.” In May 1997, she gave birth to a healthy baby girl.

Two months later, her doctors published her case in the journal Lancet; soon, at least seven other U.S. clinics were doing the injection. Because the amount of donor mitochondria added to Ott’s egg was small, it was unclear how much third-party DNA would be present in the cells of her daughter. Ott says her doctors ran tests and did not find any, but it has been found in two other children born from the procedure. Although I.V.F. drugs and devices are regulated by the Food and Drug Administration, I.V.F. procedures (like all medical procedures) are generally not. But what media outlets came to call “three-parent babies” compelled the agency to take action. In 2001, the F.D.A. informed I.V.F. clinics that using a third person’s cytoplasm — and the mtDNA therein — would require an Investigational New Drug application.

A meeting before an F.D.A. committee followed, at which the clinics presented their research. While at least 30 women became pregnant through the injections, it was unclear what role the third-party cytoplasm played in their fertility. And there were safety concerns. Two embryos with Turner syndrome, typically a rare chromosomal abnormality, occurred after the procedure; one miscarried, the other was aborted. Further, not all of the children born from the procedure in the United States were being tracked. (They would be teenagers now, whose whereabouts and health are, for the most part, unknown.) “I think it is pretty ridiculous how little data there is to support any of this, and that worries me,” the acting chairman of the F.D.A. committee, Daniel Salomon, a professor at the Scripps Research Institute, told the embryologists in his closing remarks. The “drug,” such as it was, has never been approved.

But now, more than a decade later, two research groups in the United States and one in Britain each believes it has nearly enough data to begin clinical trials for a new technique based on the transfer of mitochondria — only in this case, researchers want to pair the nuclear DNA of one egg with all the mitochondria of another. Their aim is not to cure infertility. Rather, they hope to prevent a variety of devastating diseases caused by mutations in mtDNA. The new technique, which they call mitochondrial-replacement therapy, is far more advanced than the cytoplasm injection — and the researchers have studied the procedure’s impact on animals and human cells up to a pivotal point: They have created what appear to be viable three-parent embryos. They have yet to implant one in a woman, though. In Britain, national law prohibits altering the germ line, but Parliament is very likely to vote later this year on whether to allow mitochondrial replacement to move forward. Likewise, this February, the F.D.A. held a meeting to examine the possibility of allowing clinical trials. If either gives the go-ahead, it will be the first time a government body expressly approves a medical procedure that combines genetic material of three people in a heritable way. The historic nature of the moment has turned the technique into a symbol, a red line separating humanity from a dystopian or progressive future, depending on how you look at it. In the months leading up to the meeting, the F.D.A. received several hundred emails from members of the public objecting to the idea of three-parent embryos on grounds that included: “It’s bizarre”; “You are walking in Hitler’s footsteps if you allow this”; and “We will have a world of mad scientists.”  Read More…